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Bifurcation analysis, linear stability study, and direct numerical simulations of the
dynamics of a two-dimensional, incompressible, and laminar flow in a symmetric long
channel with a sudden expansion with right angles and with an expansion ratio D/d
(d is the width of the channel inlet section and D is the width of the outlet section)
are presented. The bifurcation analysis of the steady flow equations concentrates on
the flow states around a critical Reynolds number Rec(D/d) where asymmetric states
appear in addition to the basic symmetric states when Re > Rec(D/d). The bifurcation
of asymmetric states at Rec has a pitchfork nature and the asymmetric perturbation
grows like

√
Re− Rec(D/d). The stability analysis is based on the linearized equations

of motion for the evolution of infinitesimal two-dimensional disturbances imposed
on the steady symmetric as well as asymmetric states. A neutrally stable asymmetric
mode of disturbance exists at Rec(D/d) for both the symmetric and the asymmetric
equilibrium states. Using asymptotic methods, it is demonstrated that when Re <
Rec(D/d) the symmetric states have an asymptotically stable mode of disturbance.
However, when Re > Rec(D/d), the symmetric states are unstable to this mode of
asymmetric disturbance. It is also shown that when Re > Rec(D/d) the asymmetric
states have an asymptotically stable mode of disturbance. The direct numerical
simulations are guided by the theoretical approach. In order to improve the numerical
simulations, a matching with the asymptotic solution of Moffatt (1964) in the regions
around the expansion corners is also included. The dynamics of both small- and large-
amplitude disturbances in the flow is described and the transition from symmetric to
asymmetric states is demonstrated. The simulations clarify the relationship between
the linear stability results and the time-asymptotic behaviour of the flow. The current
analyses provide a theoretical foundation for previous experimental and numerical
results and shed more light on the transition from symmetric to asymmetric states of
a viscous flow in an expanding channel. It is an evolution from a symmetric state,
which loses its stability when the Reynolds number of the incoming flow is above
Rec(D/d), to a stable asymmetric equilibrium state. The loss of stability is a result of
the interaction between the effects of viscous dissipation, the downstream convection
of perturbations by the base symmetric flow, and the upstream convection induced
by two-dimensional asymmetric disturbances.

1. Introduction
Laminar two-dimensional flow in a symmetric channel with a sudden expansion

exhibits a transition phenomenon from symmetric to asymmetric equilibrium states
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as the Reynolds number of the flow, Re, is increased. The experimental studies of
Durst, Melling & Whitelaw (1974), Cherdron, Durst & Whitelaw (1978), Sobey &
Drazin (1986), Fearn, Mullin & Cliffe (1990), and Durst, Pereira & Tropea (1993)
demonstrated for channels with moderate expansion ratios that when Re is relatively
low the flow in the channel is steady, two-dimensional, and symmetric with two
separation zones near the expansion corners, the size of which increases with Re.
However, at higher values of Re, the flow stays two-dimensional and steady but
becomes asymmetric with two separation zones of different lengths which attach on
either the upper or the lower wall of the channel. At even higher Re, additional
recirculation zones appear along the channel walls.

The numerical and experimental studies of Fearn et al. (1990) show that asymmetric
steady flow states can be numerically simulated and the observed transition behaviour
may occur as a bifurcation of asymmetric states from the symmetric states at a
certain critical Rec. They demonstrated that it may be a pitchfork symmetry-breaking
bifurcation point where the symmetric state loses its stability and evolves into the
asymmetric state when Re > Rec. Shapira, Degani & Weihs (1990) conducted linear
stability studies that are based on an energy functional. They numerically solved
the stability equations for certain channel expansion ratios and various angles of
expansion. They also found the change of stability at Rec.

Recently, Battaglia et al. (1997) have conducted numerical linear stability studies
as well as steady flow simulations to investigate the effect of the channel expansion
ratio on the appearance of the asymmetric states. They used concepts of bifurcation
theory to numerically determine the bifurcation point. They found that the critical
Reynolds number at which the transition to asymmetric states occurs decreases with
increasing channel expansion ratio. Also, Alleborn et al. (1997) have used numerical
continuation methods and numerical linear stability studies to clarify the effect of a
slight asymmetry in the channel geometry on the flow behaviour. They also extended
the steady-state bifurcation diagrams to higher values of Re, found higher-order
bifurcation points, and demonstrated the effects of these on the steady-state solutions.

Drikakis (1997) investigated the influence of various discretization schemes, from
second order up to fourth order of numerical accuracy, and numerical solvers on
the simulations of the steady-state bifurcation phenomenon in a sudden expansion
channel flow. He found that the third- and fourth-order finite difference schemes are
needed to compute values of Rec which are very close to those found in the stability
studies of Shapira et al. (1990). He also showed that Rec decreases with the increase
of the expansion ratio of the channel and that the asymmetry increases with Re.

Soong, Tzeng & Hsieh (1998) conducted numerical studies of laminar, plane, twin-
jet flows injected into a channel with sudden expansions. Time-dependent computa-
tions were performed in the search for unsteady or asymmetric flow states. They found
steady asymmetric flow patterns as well as flow instabilities and associated bifurca-
tion phenomena which are related to the jet Reynolds number, sidewall confinement,
and the jet proximity. Specifically, an unexpected Hopf bifurcation phenomenon of
unsteady periodic states was revealed in these two-dimensional flow cases.

The review of the previous experimental and numerical studies on the topic shows
that the transition from symmetric to asymmetric states in a viscous flow in an
expanding channel may be related to the bifurcation of steady-state solutions of the
Navier–Stokes equations at Rec and to the change of stability across this point. Yet,
most of the previous studies concentrated on either the numerical computations of
the steady states or on the linear stability investigations of the symmetric states.
The relationship between the previous bifurcation/linear stability analyses and the
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direct numerical simulations using the unsteady Navier–Stokes equations was not
constructed in detail and is not obvious. Also, the experimental and numerical
investigations describe the change in the flow characteristics but do not provide a
clear physical mechanism for the change of stability at the critical Re. A comprehensive
theoretical and computational approach which clarifies the above issues is of great
interest and may shed more light on the flow physics.

The objective of this paper is to present an analysis of the evolution of two-
dimensional viscous flows in a channel with a sudden expansion, to clarify the
relationship between the static bifurcation of solutions of the steady Navier–Stokes
equations and the change of stability related to the bifurcation point, to provide more
insight into the relationship between the linear stability results and unsteady flow
simulations, and to identify the mechanism by which asymmetric states appear in
the flow dynamics. To achieve these goals, asymptotic and stability analyses around
the critical Reynolds number are proper as well as necessary, in order to carefully
explore the balance between the viscous and convection effects on the dynamics of
perturbations. The theoretical approach also provides a framework in which direct
numerical simulations of the transition process in laminar flows in an expanding
channel are conducted.

The paper presents bifurcation analysis, linear stability study, and numerical sim-
ulations of a laminar flow in a symmetric channel with a sudden expansion with
right angles. The outline of the paper is as follows. The mathematical problem is
defined in § 2. The bifurcation analysis (§ 3) focuses on the flow states around Rec
where steady asymmetric states may appear in addition to the basic symmetric states
when Re > Rec. The stability analysis (§ 4) shows that a neutral asymmetric mode
of disturbance exists at the critical state for both the symmetric and the asymmetric
equilibrium states. It is demonstrated that the symmetric states change their stabil-
ity characteristics as the Reynolds number changes around the critical level. When
Re < Rec an asymptotically stable mode is found, and when Re > Rec an unstable
mode of disturbance may evolve. It is also shown that when Re > Rec, the asymmetric
states have an asymptotically stable mode of disturbance. Guided by the theoretical
approach, direct numerical simulations based on the unsteady Navier–Stokes equa-
tions are conducted (§ 5). In order to improve the numerical simulations, a matching
with the asymptotic solution of Moffatt (1964) in the regions around the expansion
corners are also included (see the Appendix). The simulations describe the evolution
of both small- and large-amplitude disturbances in the flow (§ 6). The transition from
symmetric to asymmetric states is demonstrated. The simulations clarify the relation-
ship between the linear stability results and the evolution of the flow. They also show
that the unstable mode according to the linear theory dominates the flow dynamics
at Re around Rec. The paper is concluded (§ 7) with a possible physical mechanism
which governs the flow transition.

It should also be mentioned here that the recent works of Rusak & Hawa (1999)
and Hawa & Rusak (2000) provide an additional insight into the two-dimensional
flow dynamics in an expanding channel. Rusak & Hawa (1999) focused on a weakly
nonlinear analysis of the flow dynamics which explores the special nonlinear interac-
tions between the unsteady, convective, and viscous effects. The analysis resulted in
an ordinary, nonlinear, first-order differential equation (similar to the Landau equa-
tion) which may describe the evolution of the amplitude of a special eigenmode of
perturbation as function of Re near Rec. The analytical solution showed that when
Re < Rec the symmetric state is stable. However, when Re > Rec the symmetric state
loses its stability and evolves into the asymmetric state, as also found in the present
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paper. The flow evolution, as described by the nonlinear model, showed agreement
with time-history plots from direct numerical simulations using the unsteady Navier–
Stokes equations. Hawa & Rusak (2000) extended the work of Rusak & Hawa (1999)
by including the nonlinear effect of a slight asymmetry in the channel geometry on the
flow evolution. It was found that channel asymmetry changes the pitchfork bifurcation
diagram of a flow in a symmetric channel into two separate branches of equilibrium
states. The primary branch describes a gradual and stable change of the flow states
from symmetric to asymmetric as Re is increased across Rec. The secondary branch
appears at a certain modified critical Reynolds number, Recτ > Rec, and describes two
additional asymmetric flow states for each Re > Recτ which are disconnected from the
primary branch. The large-amplitude asymmetric states along the secondary branch
are stable whereas the small-amplitude states are unstable. Again, the asymptotic
results demonstrated agreement with numerical simulations and experimental data
for Re near Rec.

2. Mathematical model
The flow of a two-dimensional, viscous, Newtonian, and incompressible fluid is

studied in a long channel of width d, which suddenly expands symmetrically, with
right angles, to a long channel of width D where D > d (see figure 1). Axial and
transverse lengths, x̄ and ȳ, are scaled by the upstream channel width d, x = x̄/d
and y = ȳ/d. The flow field is described in a Cartesian coordinate system (x, y),
where y = 0 is the centreline of the channel, and x = 0 is the expansion section of
the channel. The inlet section to the channel is located at x = −x0 (where x0 � 1)
and tends to −∞. The outlet section of the channel is located at x = x1 (where
x1 � 1) and tends to +∞. Along the upstream section of the channel, x < 0, the
lower wall is at y = −1/2 and the upper wall is at y = 1/2. At x = 0, the lower
wall is given along the segment −D/2d 6 y 6 −1/2 and the upper wall along the
segment 1/2 6 y 6 D/2d. Along the channel section where x > 0, the lower wall is at
y = −D/2d and the upper wall is at y = D/2d. We define the flow domain inside the
expanding channel as A. All velocities are normalized by Uave, the averaged velocity
of the Poiseuille flow far upstream of the channel expansion at the inlet section. The
time t̄ is scaled by d/Uave, t = t̄Uave/d. The Reynolds number characterizing the flow
problem is defined as

Re =
Uaved

ν
(1)

where ν is the kinematic viscosity. The non-dimensional Navier–Stokes equations in
the vorticity–stream function formulation are given by (Batchelor 1967)

Ωt + uΩx + vΩy =
1

Re

(
Ωxx + Ωyy

)
, (2)

Ω = −(ψxx + ψyy), (3)

u = ψy, v = −ψx. (4)

Here Ω(x, y, t) denotes the vorticity, ψ(x, y, t) denotes the stream function, and u(x, y, t),
v(x, y, t) are the axial and transverse velocity components, respectively. Equation (2)
is the vorticity transport equation of motion, and (3) is the Poisson equation relating
the stream function and the vorticity. The relations (4) show that the stream function,
ψ, identically satisfies the two-dimensional continuity equation for an incompressible
flow, ux + vy = 0. The use of the vorticity–stream function formulation reduces the
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Figure 1. Sketch of a two-dimensional channel with a symmetric sudden expansion.

flow equations to a single fourth-order partial differential equation for the evolution
of the stream function. It also eliminates the pressure from the equations and,
thereby, simplifies the boundary conditions needed for a solution of the problem.
These equations are used to solve the dynamics of the entire flow field except at the
expansion corners where the vorticity is singular.

The boundary conditions along the lower and upper walls are the tangency and
no-slip conditions, i.e. for all time t

u = 0, v = 0, ψ =

{ −1/2 along the lower wall,
1/2 along the upper wall.

(5)

A steady Poiseuille flow velocity profile is considered at the inlet section (x = −x0),
i.e. for all time t and for −1/2 6 y 6 1/2:

v(x = −x0 → −∞, y, t) = 0, (6)

u(x = −x0 → −∞, y, t) = 3
2
(1− 4y2), (7)

ψ(x = −x0 → −∞, y, t) = 3
2
(y − 4

3
y3), (8)

Ω(x = −x0 → −∞, y, t) = 12y. (9)

Outlet flow far downstream of the channel is also assumed to have a fully developed
(steady and columnar) velocity profile, i.e. for all time t and −D/2d 6 y 6 D/2d

ψx(x = x1 →∞, y, t) = 0, Ωx(x = x1 →∞, y, t) = 0. (10)

The conditions (5)–(10) were used in all of the numerical studies of the problem
(Fearn et al. 1990; Battaglia et al. 1997; Drikakis 1997; and Alleborn et al. 1997).
They may reflect the physical situation as reported in the experiments of Durst et al.
(1974, 1993) and Fearn et al. (1990).

The problem defined by equations (1)–(10) is well posed and describes the evolution
of the flow in a channel for every Re and D/d. We consider here some relevant initial
conditions for the stream function and the vorticity, such as a perturbed symmetric
state in the channel at t = 0

ψ(x, y, 0) = ψs(x, y;Re;D/d) + εψ(x, y), Ω(x, y, 0) = Ωs(x, y;Re;D/d) + εΩ(x, y).

(11)

Here, the symmetric-state solution, ψs(x, y;Re;D/d) and Ωs(x, y;Re;D/d) = −(ψsxx +
ψsyy ), is obtained numerically by solving the steady-state version of the problem (1)–
(10) in half of the domain, where y > 0, and imposing the symmetry conditions,
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v = 0, uy = 0, along the x-axis. This numerical solution is based on an iterative
procedure and is used later in §§ 3.1 and 3.2 to compute symmetric states. The
solution ψs, and the related Ωs, for the entire domain is found by reflecting the flow in
the upper region to the lower region. This method of constructing the symmetric state
is specifically needed when Re > Rec where asymmetries dominate the flow dynamics
(1)–(10) in the full domain.

In (11), εψ(x, y) and εΩ(x, y) are prescribed disturbances. These disturbances may
have small or large amplitudes. The objective of the paper is to study the evolution
of the disturbances.

In order to understand the dynamics of the flow in the channel as described by
(1)–(11), it is important to identify the steady-state solutions of the system (1)–(10).
Some of these solutions may be symmetric about the x-axis and others asymmetric
states. Also, some of the equilibrium states may be stable and others unstable to two-
dimensional perturbations. In the following sections we define the critical Reynolds
number, Rec, explore the nature of the steady-state solutions of (1)–(10) around Rec,
and investigate their stability characteristics.

3. Bifurcation analysis
3.1. Asymptotic analysis of symmetric states

Using symmetry considerations about the x-axis, steady symmetric solutions ψs(x, y;
Re; D/d) of equations (1)–(10) can be constructed for every Reynolds number Re
and expansion ratio D/d. We look for a critical Reynolds number Rec where, for a
fixed ratio D/d, steady asymmetric states suddenly bifurcate from the branch of the
symmetric states. To obtain such a critical (bifurcation) state, the stream function
ψs and the vorticity Ωs are expanded in the neighbourhood of Rec in the following
standard manner:

ψs = ψ∗s +
∆Re

Rec
ψ1

(
x, y,

D

d

)
+ · · · , (12)

Ωs = Ω∗s +
∆Re

Rec
Ω1

(
x, y,

D

d

)
+ · · · . (13)

Here ψ∗s and Ω∗s are the steady-state symmetric solutions of (1)–(4) at Rec and they
satisfy the boundary conditions (5)–(10). Also, in (12) and (13), ∆Re = Re− Rec and
|∆Re|/Rec � 1. As Re tends to Rec, the term 1/Re can be expanded as

1

Re
=

1

Rec + ∆Re
=

1

Rec

(
1− ∆Re

Rec
+ · · ·

)
. (14)

Inserting the above expansions, (12)–(14), into the steady-state version of the
vorticity–stream function equations (2)–(4) results at the leading order O(∆Re/Rec)
in a linearized system of the steady-state equations of motion

Ω∗s xψ1y + ψ∗s yΩ1x − Ω∗s yψ1x − ψ∗s xΩ1y − 1

Rec
(Ω1xx + Ω1yy) =

−1

Rec
(Ω∗s xx + Ω∗s yy), (15)

Ω1 = −(ψ1xx + ψ1yy). (16)

Notice that (15) is a non-homogeneous linear partial differential equation. The bound-
ary conditions for the velocity and stream function are specified by using (5)–(10).
Since the leading terms ψ∗s and Ω∗s satisfy those conditions, the perturbation term
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Figure 2. The functions (a) ψ1 and (b) Ω1 for the case where D/d = 3.

ψ1 and velocity perturbations u1 = ψ1y and v1 = −ψ1x must satisfy homogeneous
boundary conditions

u1 = v1 = ψ1 = 0 (17)

at the channel inlet and along the upper and lower walls. The vorticity perturbation
also has to satisfy Ω1 = 0 at the inlet. At the channel outlet, the perturbations must
satisfy

ψ1x = Ω1x = 0. (18)

Equations (15)–(18) formulate a linear non-homogeneous problem for the calcu-
lation of the perturbation function ψ1 for any Rec and expansion ratio D/d. It can
be shown that the solution of ψ1 describes a symmetric flow perturbation about the
x-axis which actually presents the change of the symmetric state ψs from ψ∗s as Re
slightly deviates from Rec. Therefore, the problem given by (15)–(18) does not provide
a critical state of bifurcation. Yet, as we can see later, the solution of this problem is
essential in the study of the stability of the symmetric states.

The problem (15)–(18) can be solved numerically using standard finite-difference
methods. However, in the present paper, we use an alternative method to compute
ψ1 and Ω1 which is based on the numerical solution of the steady-state version of
(1)–(10). Using the iterative procedure of solution in half of the domain, two steady
and symmetric flow states at Reynolds numbers Rea and Reb around the critical value
Rec (yet to be determined) can be computed. We use the following estimation:

ψ1 =
ψs(x, y;Reb;D/d)− ψs(x, y;Rea;D/d)

Reb − Rea Rec,

Ω1 =
Ωs(x, y;Reb;D/d)− Ωs(x, y;Rea;D/d)

Reb − Rea Rec.

 (19)

This computation is a numerical finite-difference approximation of ψ1 and Ω1 which
helps to avoid the solution of (15)–(18). An example of streamline and vorticity
contours of the functions ψ1 and Ω1, respectively, for the case D/d = 3 where
Rec = 53.8 (for details of determining the critical Reynolds number Rec see § 3.2)
is presented in figure 2. These functions were computed based on the steady-state
symmetric solutions at Rea = 51.0 and Reb = 54.0. It is clear that ψ1 creates a
symmetric perturbation to the symmetric flow.

3.2. Critical state for bifurcation of asymmetric states

To obtain the critical state for the bifurcation of steady asymmetric flows, the stream
function and vorticity for steady asymmetric flow at Re close to Rec are now expanded
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in a different approach:

ψas(x, y;Re; D
d
) = ψ∗s + εαψα + εβψβ + εγψγ + · · · , (20)

Ωas(x, y;Re; D
d
) = Ω∗s + εαΩα + εβΩβ + εγΩγ + · · · , (21)

where 0 < εγ � εβ � εα � 1. Subscripts α, β, and γ denote the first-, second-,
and third-order perturbations to the base critical state. It is expected from previous
numerical and experimental studies that near the critical state the flow leading-order
perturbations to the symmetric base flow are much greater than the flow changes in
the symmetric states described by (12), (13), and (19). Therefore, it is assumed that
εα � |∆Re|/Rec.

Inserting the above expansions (20), (21), and (14) into the steady version of the
vorticity-transport equations (2)–(4), results in the leading-order terms O (εα) in a
linearized homogeneous system of the steady-state equations of motion,

Ω∗s xψαy + ψ∗s yΩαx − Ω∗s yψαx − ψ∗s xΩαy − 1

Rec
(Ωαxx + Ωαyy) = 0, (22)

Ωα = −(ψαxx + ψαyy). (23)

The analysis of the next-order equations, O(εβ) and O(εγ), shows

εβ

(
Ω∗s xψβy + ψ∗s yΩβx − Ω∗s yψβx − ψ∗s xΩβy −

1

Rec
(Ωβxx + Ωβyy)

)
+ε2

α(ψαyΩαx − ψαxΩαy) +
∆Re

Rec

1

Rec
(Ω∗s xx + Ω∗s yy) = 0, (24)

Ωβ = −(ψβxx + ψβyy), (25)

and

εγ

(
Ω∗s xψγy + ψ∗s yΩγx − Ω∗s yψγx − ψ∗s xΩγy −

1

Rec
(Ωγxx + Ωγyy)

)
+εαεβ(ψαyΩβx + ψβyΩαx − ψαxΩβy − ψβxΩαy) + εα

∆Re

Rec

1

Rec
(Ωαxx + Ωαyy) = 0, (26)

Ωγ = −(ψγxx + ψγyy). (27)

The boundary conditions (5)–(10) result in homogeneous conditions for ψα, uα = ψαy ,
vα = −ψαx and Ωα:

uα = vα = ψα = 0 (28)

at the channel inlet and along the upper and lower walls. Also, Ωα = 0 at the inlet.
At the channel outlet we have

ψαx = Ωαx = 0. (29)

Similar conditions apply to ψβ, Ωβ and ψγ, Ωγ .
The problem described by (22)–(23) with boundary conditions (28)–(29) formulates

an eigenvalue problem for the solution of the critical Reynolds number Rec and the
corresponding eigenfunction ψα. Notice that this is a very complicated problem since
the eigenvalue Rec appears not only as a free parameter but also inside the formulation
of the base flow functions ψ∗s and Ω∗s . This problem was numerically solved by using
either a restarted, iterative Arnoldi method as described in Alleborn et al. (1997) or
the Cayley transform techniques coupled with subspace iterations used by Battaglia
et al. (1997). These numerical solutions demonstrated the possible existence of a
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Figure 3. The functions (a) ψα and (b) Ωα for the case where D/d = 3.

finite, first, positive eigenvalue which is defined as the critical Reynolds number Rec.
Also, note that this problem may have more eigenvalues, greater than Rec, but those
are beyond the interest of the present paper (see, for example, Alleborn et al. 1997
who found higher-order eigenvalues). It is clear that Rec is a function of the ratio
D/d. Examples of such calculations are given in Alleborn et al. (1997) and Battaglia
et al. (1997). It was also found that the eigenfunction ψα is a real function and
describes an asymmetric perturbation to the base symmetric flow at Rec. Therefore, it
can be postulated from the previous numerical studies that the solution of (22)–(23)
with boundary conditions (28)–(29) provides the critical state for the bifurcation of
asymmetric states and the structure of these states in the neighbourhood of Rec.

In the present paper we compute Rec, the eigenfunction ψα, and the related vorticity
Ωα using an alternative approach. The critical Reynolds number is found from the
dynamical simulations of (1)–(11) described later in § 6. From the computed flow
evolution at a given Re and D/d, we calculate the decay or growth rate of the
perturbations to the symmetric state. Rec is defined as the lowest Reynolds number
where the decay rate vanishes (where the growth rate of the perturbations to the
symmetric state changes its sign from negative to positive). The solution of the
eigenfunction is approximated by the following formulae:

k0ψα =
ψas(x, y; R̃e;D/d)− ψs(x, y; R̃e;D/d)

(R̃e− Rec)1/2
Re

1/2
c ,

k0Ωα =
Ωas(x, y; R̃e;D/d)− Ωs(x, y; R̃e;D/d)

(R̃e− Rec)1/2
Re

1/2
c .

 (30)

Here the Reynolds number R̃e is close to the critical value Rec and satisfies 0 <

(R̃e − Rec)/Rec � 1. The symmetric solution at R̃e, ψs and Ωs, is computed by
the numerical iterative procedure of the steady-state problem of (1)–(10) in half
of the domain where y > 0 and with symmetry conditions along the centreline.

The asymmetric state at R̃e, ψas and Ωas, is numerically determined from the time-
asymptotic solution of the flow dynamics according to (1)–(11). The constant k0 in
(30) is determined from the following higher-order analysis.

An example of streamline and vorticity contours of the functions ψα and Ωα, re-
spectively, for the case D/d = 3 where Rec = 53.8 (determined from the computations
of the flow dynamics in § 6) is presented in figure 3. These functions were computed

based on the steady-state symmetric and asymmetric solutions at R̃e = 54.0. Figure 3
shows that ψα creates an asymmetric perturbation to the symmetric flow. The value
of Rec and shape of ψα and Ωα presented here are very similar to those reported by
Battaglia et al. (1997) for the case D/d = 3.
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The second-order problem described by (24)–(25) and boundary conditions similar
to (28)–(29) suggests that for the richest case εβ = ∆Re/Rec and ε2

α = k2
0∆Re/Rec. We

also find that the solution for εβψβ is given by

εβψβ =
∆Re

Rec
(ψ1 + k2

0ψ1α) (31)

where ψ1 is the solution of the problem given by (15)–(18), and ψ1α is the solution of
the problem

εβ

(
Ω∗s xψ1αy + ψ∗s yΩ1αx − Ω∗s yψ1αx − ψ∗s xΩ1αy − 1

Rec
(Ω1αxx + Ω1αyy)

)
= −k2

0

∆Re

Rec
(ψαyΩαx − ψαxΩαy), (32)

Ω1α = −(ψ1αxx + ψ1αyy), (33)

with boundary conditions for ψ1α similar to (28)–(29). The problem for ψ1α can be
solved numerically using standard finite-difference methods. Notice, however, that the
coefficient k0 cannot be determined from a solvability condition of (32)–(33) since
multiplying (32) by ψα, integrating over the flow domain A, and using the boundary
conditions (28) and (29) gives∫∫

A

(ψαyΩαx − ψαxΩαy)ψα dy dx = 0. (34)

In the present work, the functions ψ1α and Ω1α are numerically approximated using
the estimations

k2
0

∆Re

Rec
ψ1α(x, y;D/d) ∼ ψas(x, y;Re;D/d)− ψs(x, y;Re;D/d)

−
√

∆Re

Rec
k0ψα(x, y;D/d)

and

k2
0

∆Re

Rec
Ω1α(x, y;D/d) ∼ Ωas(x, y;Re;D/d)− Ωs(x, y;Re;D/d)

−
√

∆Re

Rec
k0Ωα(x, y;D/d)

for Re near Rec. For example, when D/d = 3 we compute ψ1α from the steady
symmetric and asymmetric solutions at Re = 58.0. These functions are described
in figure 4. It can be seen that the second-order perturbation function ψ1α creates
an asymmetric flow disturbance in the expansion channel as a direct effect of the
eigenfunction ψα.

To determine k0 we may use the third-order problem given by (26)–(27). Using the
solution (31) for εβψβ we find

εγ

(
Ω∗s xψγy + ψ∗s yΩγx − Ω∗s yψγx − ψ∗s xΩγy −

1

Rec
(Ωγxx + Ωγyy)

)
+k0

(
∆Re

Rec

)3/2(
ψαyΩ1x + ψ1yΩαx − ψαxΩ1y − ψ1xΩαy +

1

Rec
(Ωαxx + Ωαyy)

)
+k3

0

(
∆Re

Rec

)3/2

(ψαyΩ1αx + ψ1αyΩαx − ψαxΩ1αy − ψ1αxΩαy) = 0. (35)
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(a)

(b)

Figure 4. The functions (a) ψ1α and (b) Ω1α for the case where D/d = 3.

Assuming |εγ| � (∆Re/Rec)
3/2, multiplying (35) by ψα, and integrating over the flow

domain A gives

k0 =

±

−
∫∫

A

(
ψαyΩ1x+ψ1yΩαx−ψαxΩ1y−ψ1xΩαy+

1

Rec
(Ωαxx + Ωαyy)

)
ψα dy dx∫∫

A

(ψαyΩ1αx + ψ1αyΩαx − ψαxΩ1αy − ψ1αxΩαy)ψα dy dx


1/2

.

(36)

The numerical estimations of ψ1, Ω1, ψα, Ωα, ψ1α, and Ω1α, provide the information
needed to compute k0. The calculation of the term in the brackets in (36) shows that
it is positive for D/d = 3, k0 has two opposite real values, and the bifurcation at Rec
is pitchfork bifurcation. We also found similar results for the case D/d = 2. From
the work of Battaglia et al. (1997) it may be concluded that this result is correct for
other values of D/d in the range 2 6 D/d 6 12.

The above asymptotic analysis demonstrates that the solution of the leading order
term exists only when Re > Rec. Therefore, when Re > Rec, steady asymmetric states,
ψas(x, y;Re;D/d) = ψ∗s (x, y;Rec;D/d) + (∆Re/Rec)

1/2k0ψα(x, y;D/d) + · · ·, exist in
addition to the basic steady symmetric states, ψs(x, y;Re;D/d) = ψ∗s (x, y;Rec;D/d) +
(∆Re/Rec)ψ1(x, y;D/d) + · · ·. However, when Re < Rec, only the symmetric states
exist. These arguments clarify the nature of the critical state at Rec as a bifurcation
point for the steady asymmetric states. Equation (36) reflects that the bifurcation is a
result of the nonlinear interaction between the perturbations ψ1, ψα and ψ1α. The ±
sign in (36) shows that the asymmetric states may be established in two possible ways
which are anti-symmetric to each other. The bifurcation of asymmetric states has a
pitchfork nature, i.e. the asymmetric perturbation to the symmetric state can exist
only when ∆Re > 0 and it grows near the critical Reynolds number like (∆Re/Rec)

1/2.
This result is in good agreement with the bifurcation diagrams obtained from the
numerical studies of Alleborn et al. (1997), Drikakis (1997), and Battaglia et al. (1997).

4. Stability analysis
In this section we study the stability of the symmetric and asymmetric steady states

described in § 3.

4.1. Stability analysis of symmetric states around Rec

To consider the stability of the symmetric states ψs(x, y;Re;D/d) we let

ψ = ψs + εψ̃(x, y, t) + · · · , (37)
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Ω = Ωs + εΩ̃(x, y, t) + · · · , (38)

where 0 < ε � |∆Re|/Rec, ψ̃ is an unsteady stream function disturbance, and Ω̃
is an unsteady vorticity disturbance. We look for the evolution of the disturbances
in the channel as described by equations (1)–(4) and boundary conditions (5)–(10).
Substituting (37)–(38) into the unsteady vorticity-transport equations (2)–(4) and
neglecting second order terms, we obtain to the leading order O (ε) the linearized
equations of motion,

Ω̃t + ψsyΩ̃x + Ωsxψ̃y − ψsxΩ̃y − Ωsyψ̃x − 1

Re
(Ω̃xx + Ω̃yy) = 0, (39)

Ω̃ = −(ψ̃xx + ψ̃yy).

The boundary conditions for ψ̃ and Ω̃ are similar to (28)–(29) for all time t.
In studying the linearized stability problem we consider a suitable mode analysis

of (39) of the form

ψ̃(x, y, t) = eσtφ̃(x, y), (40)

Ω̃(x, y, t) = eσtΦ̃(x, y), (41)

where, in the general case, the perturbation growth rate σ may be a complex number
and φ̃ and Φ̃ are complex functions. Substituting these expressions into (39) we obtain
an eigenvalue system for solving σ, φ̃, and Φ̃:

σΦ̃+ Ωsxφ̃y + ψsyΦ̃x − Ωsyφ̃x − ψsxΦ̃y − 1

Re
(Φ̃xx + Φ̃yy) = 0, (42)

Φ̃ = −(φ̃xx + φ̃yy). (43)

The boundary conditions (5)–(10) result in homogeneous conditions for φ̃, ũ = φ̃y ,

ṽ = −φ̃x, and Φ̃:

ũ = ṽ = φ̃ = 0 (44)

at the channel inlet and along the upper and lower walls. Also, Φ̃ = 0 at the inlet. At
the channel outlet we have

φ̃x = Φ̃x = 0. (45)

The problem (42)–(45) is an eigenvalue problem for solving the general relationship
between the perturbation growth rate and Reynolds number, σ(Re). The solution
of this problem presents a challenge and is complicated to achieve even by using
numerical methods (see, for example, Alleborn et al. 1997). However, it is important
to observe from (42)–(45) that when σ = 0 a neutrally stable mode of disturbance
exists when

Ωsxφ̃y + ψsyΦ̃x − Ωsyφ̃x − ψsxΦ̃y − 1

Re
(Φ̃xx + Φ̃yy) = 0, (46)

Φ̃ = −(φ̃xx + φ̃yy), (47)

with boundary conditions (44)–(45). The eigenvalue problem defined by (46)–(47)
with conditions (44)–(45) has a solution only at the eigenvalue Reynolds numbers
described by the problem (22)–(23) and (28)–(29), specifically when Re = Rec (the
first eigenvalue). This shows the interesting relationship, at Re = Rec: σ = 0, φ̃ ≡ ψα,
and Φ̃ ≡ Ωα. This means that the critical symmetric state ψ∗s at Rec is also, from a
dynamical perspective, a neutrally stable state with respect to the eigenmode at Rec.
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We show now that the critical state at Rec is also a point of exchange of stability for
the branch of symmetric states in the channel. We concentrate on the neighbourhood
of Rec and use the following asymptotic analysis. Using the results from the previous
paragraph, it is expected that as Re approaches Rec also σ = σR + iσI tends to
zero, i.e. both the real part σR and the imaginary part σI tend to zero. Also, when
Re approaches Rec the symmetric states ψs, and the related Ωs, are described by the
asymptotic expansions (12) and (13). Therefore, we consider the asymptotic expansions
for φ̃ and Φ̃ in the limit as Re→ Rec (or σ → 0) in the form

φ̃ = ψα + ε1φ̃R + iε2φ̃I + · · · , (48)

Φ̃ = Ωα + ε1Φ̃R + iε2Φ̃I + · · · , (49)

where ε1 and ε2 are small parameters which depend on Re and tend to 0 as Re tends
to Rec.

Substituting (48)–(49) into (42)–(43) and using (12)–(14) results in two equations
from the real and imaginary parts of (42)–(43) for the solution of φ̃R and φ̃I:

the real part is

σRΩα +
∆Re

Rec

[
ψαyΩ1x + Ωαxψ1y − ψαxΩ1y − Ωαyψ1x +

1

Rec
(Ωαxx + Ωαyy)

]
+ ε1

[
Ω∗s xφ̃Ry + ψ∗s yΦ̃Ry − Ω∗s yφ̃Rx − ψ∗s xΦ̃Ry − 1

Rec
(Φ̃Rxx + Φ̃Ryy)

]
− σIε2Φ̃I + O

(
ε1σR, ε1

∆Re

Rec

)
= 0, (50)

Φ̃R = −(φ̃Rxx + φ̃Ryy), (51)

and the imaginary part is

σIΩα + σRε2Φ̃I + ε2

[
Ω∗s xφ̃Iy + ψ∗s yΦ̃Ix − Ω∗s yφ̃Ix − ψ∗s xΦ̃Iy − 1

Rec
(Φ̃Ixx + Φ̃Iyy)

]
+O

(
ε1σI , ε2

∆Re

Rec

)
= 0, (52)

Φ̃I = − (φ̃Ixx + φ̃Iyy
)
. (53)

The asymptotic relations (52) and (53) show that σI = O(ε2). Actually, the numerical
studies of Alleborn et al. (1997) demonstrated that around Rec the imaginary part
vanishes, σI = 0. Therefore, in the asymptotic relations (50) and (51) the term
with σIε2 may be neglected. Also, from these relations it may be concluded that
σR = O(∆Re/Rec). Therefore,

σR = ks
∆Re

Rec
(54)

where ks is a constant to be determined. The dynamical simulations in § 6 can be
used to estimate the sign and value of ks. It is found that the stability rate parameter
of the symmetric states ks > 0. For example, the numerical study in § 6 shows that
Rec = 53.8 and ks = 0.105± 0.002 when D/d = 3. The numerical studies of Alleborn
et al. (1997) and Battaglia et al. (1997) indicate that ks > 0 for a wider range of
expansion ratios 2 6 D/d 6 12.
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To compute the stability coefficient ks, we propose that |ε1| � ∆Re/Rec. Therefore,
multiplying (50) by ψα and integrating over the flow domain A gives

ks =

−
∫∫

A

(
ψαyΩ1x + ψ1yΩαx − ψαxΩ1y − ψ1xΩαy +

1

Rec
(Ωαxx + Ωαyy)

)
ψα dy dx∫∫

A

(ψ2
αx + ψ2

αy) dy dx

.

(55)
Here the relation ∫∫

A

Ωαψα dy dx =

∫∫
A

(ψ2
αx + ψ2

αy) dy dx

has been used. The numerical estimations of ψ1, Ω1, ψα, and Ωα provide the information
needed to compute ks. For example, when D/d = 3 and using ψ1 and ψα as shown
in figures 2 and 3, we find ks = 0.102 which is in good agreement with the value for
ks = 0.105 which was obtained out of the unsteady simulations. This may also justify
the assumption that |ε1| � |∆Re|/Rec made above.

The results (54) and (55) show that as Re is increased across the critical Reynolds
number Rec the real part of the growth rate σ of the perturbation mode (40) and
(41) changes from negative to positive. This proves that the critical state at Rec is a
point of exchange of stability for the steady symmetric solutions of (1)–(10), i.e. the
symmetric states in the channel lose their stability as Re is increased toward Rec and
are unstable to a certain mode of perturbation, which is essentially the eigenfunction
ψα, for every Re > Rec. Equations (54) and (55) reflect that the change of stability
of the symmetric states is a result of the nonlinear interaction between the flow
perturbations ψ1 and ψα.

Equations (39)–(41), (48), and (49) can now be used to explain the mechanism by
which the symmetric states lose their stability. It can be seen from (39) that three
major effects compete one with the other on the stability of the base symmetric
flow. These are: (i) the convection of the vorticity perturbation by the axial velocity
of the base flow, (ii) the convection of the base flow vorticity by the axial flow
perturbations, and (iii) the viscous dissipation of the vorticity perturbation. Effect
(i) tends to convect the perturbations downstream and has a stabilizing influence.
Effect (ii) is related to the shape of the perturbation. Equations (40), (41), (48), and
(49) show that the most important perturbation is the one which is related to the
eigenmode ψα. This perturbation creates an upstream axial speed on one side of the
channel and a downstream axial speed on the other side of the channel. Therefore, it
has a destabilizing effect specifically on the side of the channel where upstream speed
is induced. The viscous dissipation (iii) has also a stabilizing effect. The combination
of these effects determines the stability of the base symmetric flow. When Re is
relatively small, the viscous dissipation is large and dominant and the flow is stable.
As Re is increased, the viscous dissipation effect decreases like 1/Re and, therefore,
the symmetric flow becomes less stable. At Rec there is a critical balance between
the destabilizing upstream convection effects of the asymmetric perturbation and the
combined stabilizing effects of the viscous dissipation and the downstream convection
by the base flow. When Re is further increased, the upstream convection effects of
the asymmetric perturbation become dominant and, therefore, the symmetric flow
becomes unstable. The larger Re is, the more unstable the symmetric flow becomes.
Also, the larger D/d is, the smaller the effect of convection of the vorticity perturbation
by the axial velocity of the base flow, and, therefore, the lower Rec is.
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4.2. Stability analysis of asymmetric states bifurcating at Rec

To consider the stability of the asymmetric states ψas(x, y;Re;D/d) given by (20)–(21),
(30)–(31), and (36) when Re > Rec

ψas(x, y;Re;D/d) = ψ∗s (x, y;Rec;D/d) + k0(∆Re/Rec)
1/2ψα(x, y;D/d)

+(∆Re/Rec)(ψ1 + k2
0ψ1α(x, y;D/d)) + · · · ,

Ωas(x, y;Re;D/d) = Ω∗s (x, y;Rec;D/d) + k0(∆Re/Rec)
1/2Ωα(x, y;D/d)

+(∆Re/Rec)(Ω1 + k2
0Ω1α(x, y;D/d)) + · · · ,

 (56)

we let

ψ = ψas + εψ̃(x, y, t) + · · · , (57)

Ω = Ωas + εΩ̃(x, y, t) + · · · , (58)

where again 0 < ε � εα, ψ̃ is an unsteady stream function disturbance and Ω̃ is an
unsteady vorticity disturbance. Substituting the above equations into the unsteady
vorticity-transport equations (2)–(4), and neglecting second-order terms, we obtain to
the leading order, O (ε), the linearized equations of motion

Ω̃t + ψasyΩ̃x + Ωasxψ̃y − ψasxΩ̃y − Ωasyψ̃x − 1

Re
(Ω̃xx + Ω̃yy) = 0,

Ω̃ = −(ψ̃xx + ψ̃yy).

 (59)

In studying the linearized stability problem, we consider a suitable mode analysis of
(59) in the form

ψ̃(x, y, t) = eσtφ̃(x, y), (60)

Ω̃(x, y, t) = eσtΦ̃(x, y). (61)

Here, in the general case, the perturbation growth rate σ may be a complex number
and φ̃ and Φ̃ are complex functions. Substituting these expressions into (59) we obtain
an eigenvalue system for solving σ, φ̃, and Φ̃:

σΦ̃+ Ωasxφ̃y + ψasyΦ̃x − Ωasyφ̃x − ψasxΦ̃y − 1

Re
(Φ̃xx + Φ̃yy) = 0, (62)

Φ̃ = −(φ̃xx + φ̃yy). (63)

The boundary conditions (5)–(10) result in homogeneous conditions for φ̃, ũ = φ̃y ,

ṽ = −φ̃x, and Φ̃ similar to (44) and (45).
The problem (62)–(63) with conditions (44)–(45) is an eigenvalue problem for

solving the general relationship between the growth rate and Reynolds number,
σ(Re), in the asymmetric case. The solution of this problem presents a challenge and
is complicated to achieve even by using numerical methods. Battaglia et al. (1997)
and Alleborn et al. (1997) show only a few such computations.

It is important to observe from (62)–(63) and (22)–(23), (28)–(29) that when Re =
Rec, ψas = ψ∗s and, therefore, σ = 0, φ̃ ≡ ψα, and Φ̃ ≡ Ωα. This means that a neutrally
stable mode of disturbance of the asymmetric states exists when Re = Rec and, from
a dynamical perspective, it is a neutrally stable state with respect to the eigenmode
ψα.

We concentrate on the neighbourhood of Rec and use the following asymptotic
analysis. Using the results from the previous paragraph, it is expected that as Re
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approaches Rec also σ = σR + iσI tends to zero, i.e. both the real part σR and
the imaginary part σI tend to zero. Also, when Re approaches Rec from above the
asymmetric states ψas, and the related Ωas, are described by the asymptotic expansions
(56). Therefore, we consider the asymptotic expansions for φ̃ and Φ̃ in the limit as
Re→ Rec from above (or σ → 0) in the form

φ̃ = ψα + ε1Rφ̃1R + iε1I φ̃1I + ε2Rφ̃2R + iε2I φ̃2I + · · · , (64)

Φ̃ = Ωα + ε1RΦ̃1R + iε1I Φ̃I + ε2RΦ̃2R + iε2I Φ̃2I + · · · , (65)

where again |ε1R| � |ε2R|, |ε1I | � |ε2I | are small parameters which depend on Re and
tend to 0 as Re tends to Rec.

Substituting (64) and (65) into (62) and (63) and using (14) and (56) results in two
equations from the real and imaginary parts of (62) and (63) for the solution of φ̃R
and φ̃I:

the real part is

σRΩα − σIε1I Φ̃1I + · · ·+ 2k0

(
∆Re

Rec

)1/2

(ψαyΩαx − ψαxΩαy)

+ ε1R

[
Ω∗s xφ̃1Ry + ψ∗s yΦ̃1Ry − Ω∗s yφ̃1Rx − ψ∗s xΦ̃1Ry − 1

Rec
(Φ̃1Rxx + Φ̃1Ryy)

]
+ ε2R

[
Ω∗s xφ̃2Ry + ψ∗s yΦ̃2Ry − Ω∗s yφ̃2Rx − ψ∗s xΦ̃2Ry − 1

Rec
(Φ̃2Rxx + Φ̃2Ryy)

]
+ ε1Rk0

(
∆Re

Rec

)1/2

(Ωαxφ̃1Ry + ψαyΦ̃1Ry − Ωαyφ̃1Rx − ψαxΦ̃1Ry)

+

(
∆Re

Rec

)(
ψαyΩ1x + ψ1yΩαx − ψαxΩ1y − ψ1xΩαy +

1

Rec
(Ωαxx + Ωαyy)

)
+ k2

0

(
∆Re

Rec

)
(ψαyΩ1αx + ψ1αyΩαx − ψαxΩ1αy − ψ1αxΩαy) + · · · = 0, (66)

Φ̃1R = −(φ̃1Rxx + φ̃1Ryy), (67)

Φ̃2R = −(φ̃2Rxx + φ̃2Ryy), (68)

and, the imaginary part is

σIΩα + σRε1I Φ̃1I

+ε1I

[
Ω∗s xφ̃1Iy + ψ∗s yΦ̃1Ix − Ω∗s yφ̃1Ix − ψ∗s xΦ̃1Iy − 1

Rec
(Φ̃1Ixx + Φ̃1Iyy)

]
+ · · · = 0,

(69)

Φ̃1I = −(φ̃1Ixx + φ̃1Iyy). (70)

The asymptotic relations (69) and (70) show that σI = O(ε1I ). Actually, the numerical
studies in § 5 demonstrate that around Rec the imaginary part for the asymmetric
states also vanishes, σI = 0. Therefore, in the asymptotic relations (66)–(68) the term
with σIε1I may be neglected. The leading-order terms in (66) are those relating σR ,√

∆Re/Rec, and ε1R . After multiplying these terms by ψα and integrating over the

flow domain A, the term related
√

∆Re/Rec vanishes. This means that for a consistent
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behaviour |σR| �
√

∆Re/Rec. Therefore, the leading-order terms related to ε1R and√
∆Re/Rec give

ε1R

[
Ω∗s xφ̃1Ry + ψ∗s yΦ̃1Rx − Ω∗s yφ̃1Rx − ψ∗s xΦ̃1Ry − 1

Rec
(Φ̃1Rxx + Φ̃1Ryy)

]

= −2k0

(
∆Re

Rec

)1/2

(ψαyΩαx − ψαxΩαy), (71)

Φ̃1R = −(φ̃1Rxx + φ̃1Ryy). (72)

Comparing (71) and (72) with (32) and (33) shows that ε1Rφ̃1R = 2k0

√
∆Re/Recψ1α

and ε1RΦ̃1R = 2k0

√
∆Re/RecΩ1α. Substituting this back into (66) and collecting terms

shows

σRΩα + ε2R

[
Ω∗s xφ̃2Ry + ψ∗s yΦ̃2Rx − Ω∗s yφ̃2Rx − ψ∗s xΦ̃2Ry − 1

Rec
(Φ̃2Rxx + Φ̃2Ryy)

]
+

(
∆Re

Rec

)[
3k2

0(Ωαxψ1αy + ψαyΩ1αx − Ωαyψ1αx − ψαxΩ1αy)

+ ψαyΩ1x + ψ1yΩαx − ψαxΩ1y − ψ1xΩαy +
1

Rec
(Ωαxx + Ωαyy)

]
+ · · · = 0. (73)

Equation (73) shows that σR = kas∆Re/Rec. Assuming that |ε2R| � ∆Re/Rec, multi-
plying (73) by ψα, integrating over the flow domain A, and using the formula (36) for
k0 results in the stability coefficient for the asymmetric states

kas = 2

∫∫
A

(
ψαyΩ1x + ψ1yΩαx − ψαxΩ1y − ψ1xΩαy +

1

Rec
(Ωαxx + Ωαyy)

)
ψα dy dx∫∫

A

(ψ2
αx + ψ2

αy) dy dx

.

(74)
The comparison between (74) and (55) shows that kas = −2ks. Since ks > 0 then
kas < 0. For example, when D/d = 3 the asymptotic estimation gives ks = 0.102 and,
therefore, we find that kas = −0.204.

The numerical dynamical simulations described in § 6 can also be used to estimate
the sign and value of kas. For example, when D/d = 3 it is found that Rec = 53.8 and
kas = −0.195±0.005 which is in agreement with the predictions according to (74) and
may also justify the assumption that |ε2R| � ∆Re/Rec.

The result (74) shows that the asymmetric states bifurcating at the critical Reynolds
number have a decaying mode of perturbation. As Re is decreased toward the critical
Reynolds number Rec the real part of the decay rate σ of the perturbation mode (60)
and (61) tends to zero. This demonstrates that for a fixed D/d the asymmetric states
in the expanding channel may be stable and they lose their stability characteristics as
Re is decreased toward Rec. Equation (74) reflects that the stability of the asymmetric
states is a result of the nonlinear interaction between the flow perturbations ψ1 and
ψα.

Equations (56), (59)–(61), (64), (65) and (73) can now be used to explain the
mechanism by which the asymmetric states are stable when Re > Rec. It can be seen
from (59) that several major effects compete on the stability of the base asymmetric
flow. These are the convection of the vorticity perturbation by the axial velocity of the
base flow, the convection of the base flow vorticity by the axial flow perturbations, and
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the viscous dissipation of the vorticity perturbation. Equations (56) and (59) show that
the first effect is composed of (i) a downstream convection of the perturbation by the
symmetric part of the base flow and (ii) an upstream convection of the perturbation
on one side of the channel by the asymmetric part of the base flow. The second effect
is composed of (iii) a convection of the vorticity of the symmetric part of the base
flow by the perturbation and (iv) a convection of the vorticity of the asymmetric part
of the base flow by the perturbation. (v) The viscous dissipation has a stabilizing
effect but when Re > Rec this is a relatively small effect. The combination of these
effects determines the stability of the asymmetric state. Equations (64) and (65) show
that the most important perturbation is again the one related to the eigenmode ψα.
This eigenmode also describes the asymmetric part of the base asymmetric state.
Therefore, effects (i), (iii), and (v) combine together exactly as in the stability of the
symmetric state. When Re > Rec this combination creates an unstable effect to initiate
the growth of the asymmetric perturbation. On the other hand, effects (ii) and (iv) are
similar and together create a combined convection effect of the vorticity perturbation
by the axial velocity perturbation in the downstream direction. When Re > Rec this
combined effect grows with the size of the perturbation and has a stabilizing influence.
It helps to stabilize the growth of the asymmetric perturbation to the symmetric flow
and establish the asymmetric steady state. In the neighbourhood of Rec, the larger
Re is, the more stable the asymmetric flow becomes.

4.3. Summary of asymptotic and stability analyses around Rec

The results of §§ 3 and 4 are summarized in the bifurcation diagram shown in figure 5.
This figure shows steady-state results according to the asymptotic solutions (shown
by the solid and dashed lines) and direct numerical simulations of (1)–(10) (shown
by the symbols) for the case where D/d = 3 (for more details on the computations,
see §§ 5 and 6). In this figure we use the parameter vmax(x, 0;Re, D/d), the maximum
transverse speed along the channel centreline, as a measure of the asymmetry of a
certain flow state. For the branch of symmetric states, vmax(x, 0;Re, D/d) = 0 for all Re,
whereas for the branch of asymmetric states bifurcating at Rec, vmax(x, 0;Re, D/d) =

k0

√
∆Re/Recψαx(x∗, 0;D/d) + · · · where x∗ is the location of maximum transverse

speed. The stability characteristics of the various branches of flow states are also
shown in figure 5. The relationship between flow criticality and stability is evident.
The transition from the unstable symmetric states to the stable asymmetric states
when Re > Rec = 53.8 is also understood from this figure. It can also be seen from
figure 5 that when Re < 65 the asymptotic results for both the symmetric and the
asymmetric states agree with the numerical simulations within 0.01 of Uave. As Re
is increased above 65, the flow asymmetries predicted by the asymptotic solutions
for the primary branch are greater than those found in the numerical simulations.
The reason for this deviation may be related to the second-order nonlinear effects
which are neglected in the asymptotic analysis around Rec but are included in the
direct numerical simulations. These effects become important as Re increases much
above Rec. This bifurcation and stability diagram is similar to that presented in the
experimental and numerical studies of Fearn et al. (1990) and the simulations by
Battaglia et al. (1997).

5. Numerical scheme
5.1. Global scheme

The vorticity–stream function equations (1)–(10) which describe the evolution of the
flow in the channel are solved numerically. A uniform finite-difference mesh with step
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Figure 5. The bifurcation diagram and stability characteristics for a low-Reynolds-number flow in
an expanding channel with D/d = 3. Lines represent asymptotic results where a solid line represents
a stable solution and a dashed line represents an unstable solution. Open squares represent results
from numerical simulations. The arrows represent a transition phenomenon from an unstable state
to a stable state.

sizes ∆x and ∆y is constructed in the flow domain A with grid points labelled by (i, j),
where 1 6 i 6 IM and 1 6 j 6 JM. Equal time steps ∆t are considered where each
time level is labelled by n. The time-derivative term is approximated by a first-order
forward-difference expression whereas second-order central-difference schemes are
used for the spatial derivatives (Hoffmann & Chiang 1998). The conservative form of
(2) is used for the convective terms. Therefore, the finite-difference formulation used
to numerically solve equations (1)–(10) is given by a central-differences scheme:

Ωn+1
i,j − Ωn

i,j

∆t
+
uni+1,jΩ

n
i+1,j − uni−1,jΩ

n
i−1,j

2∆x
+
vni,j+1Ω

n
i,j+1 − vni,j−1Ω

n
i,j−1

2∆y

=
1

Re

Ωn
i+1,j − 2Ωn

i,j + Ωn
i−1,j

(∆x)2
+

1

Re

Ωn
i,j+1 − 2Ωn

i,j + Ωn
i,j−1

(∆y)2
. (75)

Here the time step is chosen such that the Courant number C = ∆t/∆x < 1.0 and the
cell Reynolds number Recell = Re∆x < 2/C to ensure that the scheme is numerically
stable. At each time level n, an iterative point-relaxation algorithm according to the
Gauss–Seidel formulation is used to solve the Poisson equation (3) for the stream
function (Hoffmann & Chiang 1998). The iterative process for iteration step k is given
by

ψ
n,k+1
i,j =

1

2(1 + κ2)

[
(∆x)2Ω

n,k
i,j + ψ

n,k
i+1,j + ψ

n,k+1
i−1,j + κ2

(
ψ
n,k
i,j+1 + ψ

n,k+1
i,j−1

)]
. (76)

Here κ = ∆x/∆y. The iteration steps are repeated until for a certain k

maxi,j

∣∣∣ψn,k+1
i,j − ψn,ki,j

∣∣∣ < δψ (77)

where δψ is a small positive number. We use as a convergence condition δψ = 10−7

for every time level n. It is found that changing δψ to lower values only increases the
number of iterations but does not affect the numerical solution of the flow dynamics.
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Other flow parameters, such as speeds u and v, are computed by a second-order
centred-difference approximation, i.e.

uni,j =
ψni,j+1 − ψni,j−1

2∆y
, vni,j = −ψ

n
i+1,j − ψni−1,j

2∆x
. (78)

The entire numerical scheme is explicit, first order in time and second order in
space. We start from an initial state which is a perturbed symmetric solution given
by

ψ(x, y, 0;Re;D/d) = ψs(x, y;Re;D/d) + δk0ψα,

Ω(x, y, 0;Re;D/d) = Ωs(x, y;Re;D/d) + δk0Ωα.

}
(79)

The steady symmetric state ψs(x, y;Re;D/d) and Ωs(x, y;Re;D/d) is computed by
solving the problem in the upper half of the domain, by using the symmetry boundary
conditions along the x-axis at y = 0 for all time t, and then by reflecting the flow
solution in the upper region to the lower region. The perturbation functions ψα and
Ωα in (79) are computed according to (30) and the size of the initial perturbation
is determined by the parameter δ. The above numerical scheme is used to integrate
the flow solution in space and time. The vorticity difference at each time step n is
used as a measure for the convergence of the flow dynamics to steady state. The time
integration is continued until

maxi,j
∣∣Ωn+1

i,j − Ωn
i,j

∣∣ < δΩ (80)

where δΩ = 10−10 is used in the present computations. Although the Poisson equation
convergence is δψ = 10−7, it typically becomes δψ ≈ 10−11 as the flow approaches a
steady state.

5.2. Computations near the expansion corners

One of the problems in computing an accurate solution of (1)–(10) is the local singular
behaviour of a viscous flow around an expansion corner with a right angle. To obtain
this behaviour near the channel corners at (x = 0, y = −1/2) and at (x = 0, y = +1/2),
we follow the analysis of Moffatt (1964) and study the flow field around a right-angle
corner. The details of the asymptotic corner solution are described in the Appendix.

The asymptotic solution (A 14) and (A 16) around a right-angle corner is used
in the numerical computations to establish the values of flow properties near the
upper and lower expansion corners. The region of validity of the asymptotic corner
solution is given by the condition (A 15). In the present numerical computations we
apply this solution at the seven grid points surrounding each of the corners and
denoted by e (see figure 6). The asymptotic and numerical solutions are expected
to match along the intermediate grid points, denoted by � (see figure 6). The two
parameters Dα1

(t) and Dα2
(t) in the asymptotic solution (A 14) are computed from

matching both solutions for ψ along the intermediate grid points. For example, when
a uniform mesh is constructed near the expansion corner and the distance between
the expansion corner and any intermediate point � satisfies the required condition
(A 15), there are 13 relations at the intermediate points (see figure 6). Using (A 14),
the relationship between the location and ψ at each of the 13 intermediate points and
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at each time level n+ 1 may be described in a matrix form by

X

(
Dα1

(t)
Dα2

(t)

)(n+1)

=


ψ1 − ψ0

ψ2 − ψ0

...
ψ13 − ψ0


(n)

(81)

where the matrix X is given by

X =


rα1

1 fα1
(θ1) rα2

1 fα2
(θ1)

rα1

2 fα1
(θ2) rα2

2 fα2
(θ2)

...
...

rα1

13fα1
(θ13) rα2

13fα2
(θ13)

 . (82)

Multiplying both sides of (81) from the left by the transpose matrix of X , XT , we find

Y

(
Dα1

(t)
Dα2

(t)

)(n+1)

= XT


ψ1 − ψ0

ψ2 − ψ0

...
ψ13 − ψ0


(n)

(83)

where the matrix Y is given by

Y = XTX . (84)

Then, multiplying both sides of (83) from the left by the inverse matrix of Y , Y −1, we
find

(
Dα1

(t)
Dα2

(t)

)(n+1)

= Y −1XT


ψ1 − ψ0

ψ2 − ψ0

...
ψ13 − ψ0


(n)

. (85)

Thus, the two parameters Dα1
(t) and Dα2

(t) can be estimated from (85) using the
numerical solution at the previous time level for ψ. All the flow parameters in
the region inside the intermediate points, denoted by e, are then computed by
the asymptotic solution. All the flow parameters outside this region and at the
13 intermediate points are computed by the numerical scheme (75)–(76). This is a
least-squares method of solution for Dα1

(t) and Dα2
(t).

In order to further increase the accuracy of numerical results and satisfy the
condition (A 15), we also introduce a multiple grid refinement near the expansion
corners (see figure 7). The method for the grid refinement is based on the third-order
tensor product polynomial (see Chesshire & Henshaw 1990 or Cole & Schwendeman
1990 for more details of this technique) to satisfy the consistency of the numerical
scheme between the global and local grids. As Re of the incoming flow is increased,
the region where the asymptotic corner solution is valid becomes smaller and more
grid refinement levels are used. The local asymptotic solution and grid refinement are
used at each time level of the numerical scheme.

6. Numerical studies
We first investigated the sensitivity of the numerical solutions to grid refinement,

time-step reduction, and domain size. We concentrated on a channel with an expansion
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Figure 6. Grid geometry near an expansion corner.

j + 1

j + 2

j – 1

j

i + 1i – 1i – 2 i + 2i

Figure 7. Grid refinement geometry near an expansion corner.

ratio D/d = 3. Two typical test cases where Re = 40 and δ = 0.16 and Re = 65
and δ = 0.05 were investigated in detail. Discussion on the flow dynamics in these
cases is given later in this section. In the first case, the flow is initially perturbed, the
disturbances decay in time, and the flow returns to a symmetric equilibrium state,
whereas in the second case, the disturbance evolves into an asymmetric equilibrium
state. Uniform meshes with step sizes ∆x = ∆y = 0.05 and ∆x = ∆y = 0.025 were
used in the grid refinement analysis. Similar mesh step sizes were used by Fearn et
al. (1990), Durst et al. (1993), Battaglia et al. (1997), Drikakis (1997), and Alleborn
et al. (1997) in their Navier–Stokes simulations. Three local grid refinement levels
were also used near the expansion corners such that the local mesh size near the
corners is on the order of ∆x = ∆y = 0.006. We first find that for computing the
time-asymptotic (steady) states, the mesh with step sizes of 0.05 provides sufficient
accuracy when compared with the computations using the more refined mesh with
step sizes of 0.025. The maximum absolute value of the variations of ψ at points in the
flow field is less than 2% for both cases of Re. It should be pointed out, however, that
local variations of about 6% were found in computing the vorticity field Ω. Similar
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Figure 8. Time-history plots of the norm ∆n
ψ for various initial disturbances according to the direct

numerical simulations and the weakly nonlinear theory of Rusak & Hawa (1999) for Re = 58 and
D/d = 3.

sensitivities were found in the simulations of Battaglia et al. (1997) and Alleborn et al.
(1997). It should also be emphasized here that a good correlation is found between the
decay or growth rates of small disturbances and the theoretical predictions found in
§ 4. Moreover, the time-asymptotic states of the present simulations show agreement
with the asymptotic predictions for every Re in the range 1 6 Re < 65 (see figure 5
above). These issues provide additional confidence in the present computations.

The numerical stability condition on the cell Reynolds number, Recell < 2/C with
C = ∆t/∆x < 1, typically dictates the time step size ∆t. Therefore, as Re decreases
smaller time steps should be used. For example, when Re = 65 a time step ∆t = 0.0008
is used and when Re = 40 a time step ∆t = 0.0005 is used. Numerical results for the
above-mentioned meshes and test cases showed similar evolution of the flow fields
when even smaller time steps were used. In addition, figure 8 presents time-history
plots of the maximum difference of the temporal solution from the symmetric state,
defined as ∆n

ψ = maxi,j(|ψni,j − ψsi,j |), for the cases where Re = 58, D/d = 3, and
δ = 0.067, 0.05. The uniform mesh for both cases has step sizes ∆x = ∆y = 0.05. Also
shown in figure 8 are results of the flow dynamics according to the weakly nonlinear
theory of Rusak & Hawa (1999). It can be seen that the flow evolution according to
the direct numerical simulations and the asymptotic predictions agree one with the
other. We also refer to figures 3, 4, and 5 in Rusak & Hawa (1999) for additional
comparisons of results from the numerical simulations with the weakly nonlinear
theory predictions. Agreement between these results was found for all cases where Re
is around Rec = 53.8 and δ > 0.04. The differences between results for cases where Re
is away from Rec can be attributed to the second-order terms that become important
for such Re but are neglected in the weakly nonlinear analysis. However, it should be
pointed out here that for cases where Re is close to Rec (such as Re = 58) and where
the initial perturbation is relatively small, δ < 0.02, global mesh refinement is needed
in order to capture the details of the relatively slow flow dynamics (see figure 5 in
Rusak & Hawa 1999). Despite this, the time-asymptotic (steady) states for these cases
can be still accurately computed with coarser meshes.

Our experience also shows that the flow dynamics is not affected when the channel
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Figure 9. Streamline patterns of the local flow around the corner for Re = 5 according to (a) the
asymptotic formula (A 14), and (b) the numerical simulation including the matching with (A 14).

inlet section is at −x0 6 −2.0. On the other hand, the outlet section at x1 should be
carefully chosen to ensure fully developed laminar flow at the outlet, specifically as
Re increases. We find that the flow dynamics is not affected by the outlet conditions
in the range 10 < Re < 100 when x1 > 40.

These results demonstrate the numerical accuracy of the present computations as
both the mesh and time step sizes are decreased and the size of the computational
domain is increased.

A typical local behaviour of the flow near the expansion corner for the case where
Re = 5 (symmetric channel flow) is presented in figure 9. We find that this flow
solution near the corners does not change with mesh refinement as long as the
condition (A 15) is satisfied. When Re = 5 only one level of refinement is needed
to achieve a converged solution. The computations show that at the steady state
Dα1

= 0.74 · · · and Dα2
= −0.25 · · ·. The streamline patterns of the flow for this case

according to the asymptotic formula (A 14) are described in figure 9(a) and the flow
solution including the matching with the asymptotic formula (A 14) is described in
figure 9(b). It can be seen that when Re = 5 the smooth asymmetric mode dominates
the flow near the corners in both the asymptotic corner solution and the numerical
simulation. The separation region develops along the vertical wall, at about 0.1d away
from the corner. As Re increases, the separation region approaches the corner and
when Re > 30 it develops very close to the corner.

To demonstrate the advantage of using the present numerical scheme with the
asymptotic corner solution, we also conducted numerical simulations with the same
finite-difference scheme without the local corner solution. In this second (standard)
scheme, the derivatives at the grid points just around the corners were calculated using
second-order backward differences (at points upstream of the corners) or second-order
forward differences (at points downstream of the corners). In this way, we avoid the
need to compute the values of Ω at the corners. The second scheme also used the same
meshes as well as the same mesh refinement technique around the corners as described
above. The results of the streamline patterns around the corners according to the
standard scheme for Re = 5 are compared in figure 10 with the results according to the
present scheme. It can be seen that, unlike the present numerical method, the standard
scheme needs several levels of refinement near the corners (at least 5 levels) to achieve
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Figure 10. Comparison of streamline patterns according to the numerical scheme using the
asymptotic corner solution and a standard scheme with different levels of refinement for Re = 5.

numerical convergence of the solution near the corners. Moreover, it is very interesting
to see that the results of the standard scheme converge toward the results of the present
scheme as the level of refinement is increased. These computations demonstrate that
the use of the local corner solution within the numerical simulation of the flow in
the channel enhances the accuracy of the simulations and requires less computational
effort (refinements near the corners) to achieve converged numerical results.

The present numerical computations are also compared with the experimental
measurements reported in Fearn et al. (1990) of the axial velocity fields at various
cross-sections along a channel with an expansion ratio D/d = 3. Figure 11(a) shows
the results for the case Re = 40 where the flow is symmetric and figure 11(b) shows
results for the case Re = 80 where the flow establishes an asymmetric state. It can
be seen from both figures that the present numerical computations provide a good
prediction of the flow fields in both cases, similar to the simulations of Fearn et al.
(1990), Durst et al. (1993), Drikakis (1997), and Battaglia et al. (1997).

The dynamics of several flow cases with various incoming Reynolds numbers
in a channel with an expansion ratio D/d = 3 is now studied. For this channel
geometry, the numerical analyses of Battaglia et al. (1997) show that Rec = 53.8.
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Figure 11. Comparison of computational results with experimental axial flow measurements by
Fearn et al. (1990) at various cross-sections along a channel with D/d = 3 when (a) Re = 40 and
(b) Re = 80.

A similar result is also found in Drikakis (1997), Alleborn et al. (1997), and the
present results described below. The initial perturbation functions k0ψα and k0Ωα in
(79) are calculated using (30) (where the symmetric and asymmetric equilibrium states

computed at R̃e = 54 are used in (30)).
In the first case, we study a flow with Re = 40. In this case, Re < Rec and,

according to the theory, the base symmetric state is unconditionally stable to any
two-dimensional disturbance. Starting from the initial conditions (79) with δ = 0.16
we can see in figure 12 that even a large asymmetric disturbance decays relatively
quickly. After about 100 time units, d/Uave, the flow returns to a symmetric state and
stays there as expected. Similar behaviour occurs with any other disturbance value
of δ and the only difference is the time it takes for a disturbance to decay, which is a
function of the size of the initial amplitude δ.

Figure 13 shows lines of ψ(x, y, t;Re;D/d) − ψs(x, y;Re;D/d) along horizontal
cross-sections of the channel at y = ±1.0 and at various times. Again, it can be seen
that the initial asymmetric perturbation quickly decays in time. The decay process
seems to be related to the viscous dissipation and also to the slight effect of the
convection of the perturbation by the axial velocity of the base symmetric flow. This
mechanism of decay matches the predictions from the stability study in § 4.1.

To demonstrate the absolute decay to a symmetric state when Re = 40, we show
the time-history plots of the norm ∆n

ψ (see figure 14). It can be seen that for the
two cases with Re = 40 and δ = 0.008 (a small initial perturbation) or δ = 0.16
(a large initial perturbation), the dynamics of the disturbance is similar: after a
nonlinear transient and when the perturbation becomes sufficiently small, ∆n

ψ decays
exponentially, ∆n

ψ ∼ exp (σRst), and with almost the same rate of decay for both values
of δ. For Re = 40, we find σRs ∼ −(0.042± 0.001)Uave/d.

Also shown in figure 14 are the time-history plots of the norm ∆n
ψ for other values

of Reynolds number below the critical value Rec = 53.8 with same initial amplitude,
δ = 0.008. The comparison between the various lines shows that the decay rate of a
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Figure 12. Time-history plots of the stream function ψ(x, y, t) for a flow with Re = 40 in a channel
with D/d = 3 and δ = 0.16.
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Figure 13. Lines of ψ(x, y, t;Re;D/d)− ψs(x, y;Re;D/d) along horizontal cross-sections of the
channel at y = ±1 for Re = 40, D/d = 3, and δ = 0.16.

disturbance decreases as Re is increased toward the critical value, in accordance with
the theoretical predictions of the stability study in § 4.1. Moreover, when Re is very
close to Rec, we can see the very slow decay of the perturbation when Re = 53.0,
almost no decay or growth of the perturbation when Re = 53.8, and the slow growth
of the perturbation when Re = 55.0. These results clearly demonstrate the critical
nature of the flow state at Re = 53.8 and the change of σRs from negative to positive
for the branch of symmetric states as Re is increased across Re = 53.8.
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Figure 14. Time-history plots of the norm ∆n
ψ for various flows with Re below and around Rec in

a channel with D/d = 3. Initial disturbance amplitude is indicated in each case.

We study now a flow with Re = 65. In this case, Re > Rec and, according to
the theory, the symmetric state is unstable to two-dimensional disturbances. Starting
from the initial conditions (79) with δ = 0.05 we can see (figure 15) that the relatively
small initial asymmetric disturbance grows in time and evolves in a nonlinear process
into an asymmetric state which reaches a steady state (after about 300 time units), as
expected by the stability study in §§ 4.1 and 4.2. Similar behaviour occurs with other
disturbance amplitudes δ but the time it takes for a disturbance to grow and stabilize
is longer with the decrease of δ.

Figure 16 presents lines of ψ(x, y, t;Re;D/d) − ψs(x, y;Re;D/d) along horizontal
cross-sections of the channel at y = ±1.0 and at various times. It can be seen again
that the asymmetric initial perturbation grows in time and on one side of the channel
it propagates upstream. The disturbance stabilizes at a certain position close to the
expansion section. It seems that the growth of the asymmetric perturbation results
from the upstream convection of the vorticity of the base symmetric state by the
perturbation itself on one side of the channel. As the perturbation grows, it reaches a
steady value due to the interaction of the perturbation with itself, with the inlet flow,
and with the expansion corners. An asymmetric equilibrium state is established. This
mechanism of disturbance growth matches the predictions from the stability studies
in §§ 4.1 and 4.2.

To demonstrate the instability of the symmetric state at Re = 65 to various initial



Laminar flow in a channel with a sudden expansion 311

t = 0

t = 40

t = 160

Figure 15. Plots of the stream function ψ(x, y, t) at different times for a flow with Re = 65 in a
channel with D/d = 3 and δ = 0.067.
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Figure 16. Lines of ψ(x, y, t;Re;D/d)− ψs(x, y;Re;D/d) along horizontal cross-sections of the
channel at y = ±1 for Re = 65 and D/d = 3.

disturbances and the convergence to the same steady and stable asymmetric state,
time-history plots of the norm of the solution ∆n

ψ are presented in figure 17. The
growth of the perturbation in time, the significant departure from the symmetric
state, and the evolution to the same asymmetric state are evident for all cases.
Moreover, when the initial perturbation is not related to the eigenmode ψα, this
disturbance quickly decays and the flow creates the mode of instability related to ψα.
It can also be seen that for all cases with Re = 65 the dynamics of the disturbance is
similar: the asymmetric perturbation grows exponentially, d∆n

ψ/dt ∼ exp (σRst), and
with almost the same rate of growth, σRs ∼ (0.015 ± 0.002)Uave/d. The convergence
to the asymmetric state is also exponential, d∆n

ψ/dt ∼ exp (σRast) and with a rate
of decay, σRas ∼ −(0.031 ± 0.002)Uave/d. Note that for Re = 65, σRas ∼ −2σRs as
predicted by the stability study in § 4.
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Figure 17. Time-history plots of the norm ∆n
ψ for a flow with Re = 65 in a channel with D/d = 3.
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Figure 18 shows time-history plots of the norm d∆n
ψ/dt for various values of

Reynolds number above the critical value Rec = 53.8 with same initial disturbance
of δ = 0.067. The comparison between the lines shows that the growth rate of the
disturbance increases as Re is increased above the critical value, again in accordance
with the theoretical predictions in § 4. It is also clear that when Re is close to 53.8, the
rate of change of the disturbance tends to zero, demonstrating that the critical state
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channel with D/d = 3.

at Rec = 53.8 is a neutral state for the branch of both the symmetric and asymmetric
states, i.e. σRs = σRas = 0 at Re = 53.8.

The time-history plots in figures 14 and 18 provide information with which to
compute the decay or growth rates of disturbances, σRs for the symmetric states,
and σRas for the asymmetric states, as function of Re for a fixed expansion ratio
D/d = 3. The results are summarized in figure 19. It can be seen that σRs grows
monotonically with Re and σRs = 0 at the critical state where Re = Rec = 53.8, in
complete agreement with Battaglia et al. (1997), Drikakis (1997), and Alleborn et al.
(1997) when the same definition of Re is used. Moreover, σRs < 0 when Re < Rec and
σRs > 0 when Re > Rec. The rate of change of σRs with ∆Re/Rec at the critical state
is computed and we find ks = σRs/(∆Re/Rec) = 0.105 ± 0.002 when D/d = 3. This
value is in good agreement with the value ks = 0.102 found according to the formula
(55).

Figure 19 also shows that the rate σRas is negative when D/d = 3 for all Rec <
Re < 100. The rate of change of σRas with ∆Re/Rec at the critical state is computed
and we find kas = σRas/(∆Re/Rec) = −(0.195± 0.005) when D/d = 3. This value is in
agreement with the value kas = −2ks = −0.204 found according to the formula (74).
Notice that nonlinear effects become important as Re increases above 65, σRas reaches
a minimum value at Re = 77, and it is less negative for higher values of Re.

Finally, the comparison of the streamline plots from the direct numerical simula-
tions and the asymptotic solutions (56) at various Re > Rec is shown in figure 20.
The streamline plots from the asymptotic solutions are found by using

ψas = ψs +
√

∆Re/Rec(k0ψα),
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(a)
Re = 58

(b)

(a)
Re = 65

(b)
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(b)

Figure 20. Comparison of the streamline plots from (a) the numerical simulations and (b) the
asymptotic solutions at Re = 58, 65, 80 and 100 for a channel with D/d = 3.

where (k0ψα) is computed by (30) at R̃e = 58:

k0ψα =
ψas(R̃e = 58)− ψs(R̃e = 58)√

4.2/53.8
.

It can be seen that at Re = 58 and Re = 65 the streamline plots of the asymptotic
solutions agree with those of the numerical simulations (see also figure 5 which is
based on the same simulations for a quantitative agreement of the results). However,
as Re is increased, the asymptotic solutions present more-asymmetric flow states than
the numerical simulations. This may happen because of the higher-order nonlinear
effects which are neglected in the asymptotic solution (56) but are included in the
simulations and become dominant as Re is increased much above Rec. In other words,
as Re is increased, max[k0ψα] of asymptotic solutions grows like

√
Re− Rec. However,

max[k0ψα] of the numerical simulations does not grow so much with Re.
It is also interesting to notice that at Re = 100 both streamline plots show an

additional (third) recirculation zone. The third zone predicted from the asymptotic
solutions (56) is larger than that found in the direct numerical simulations. The
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asymptotic solution (56) at Re = 100 actually shows that the eigenmode ψα may
contain the information to create the additional recirculation zone. The appearance
of the additional recirculation zone depends on the size of the amplitude of the eigen-
mode ψα. The previous experimental and numerical studies focused their attention
on the size and location of the observable recirculation zones. However, the present
study shows that the appearance of the additional recirculation zone probably does
not result from another bifurcation point of this channel flow problem.

7. Conclusions
The dynamics of a two-dimensional viscous flow in a symmetric long channel with

a sudden expansion with right angles has been studied by asymptotic analyses, linear
stability studies, and numerical simulations. The bifurcation analysis of solutions of
the steady Navier–Stokes equations examines the equilibrium states around a critical
Reynolds number, Rec. Asymmetric states appear in addition to the basic symmetric
states when Re > Rec. It is found that the bifurcation of asymmetric states at Rec
has a pitchfork nature and the asymmetric perturbation grows in a parabolic manner
near Rec. The stability analysis is based on a linearized set of the equations of motion
for the development of infinitesimal two-dimensional disturbances imposed on the
steady symmetric as well as asymmetric states. It is found that a neutrally stable
asymmetric mode of disturbance exists at the critical state for both the symmetric
and the asymmetric equilibrium states. Using asymptotic methods, it is demonstrated
that the symmetric states change their stability characteristics as the Reynolds number
changes around the critical level. When Re < Rec an asymptotically stable mode is
found and when Re > Rec an unstable mode of disturbance may develop. It is also
shown that when Re > Rec, the asymmetric states have an asymptotically stable mode
of disturbance. The study demonstrates that the eigenfunction ψα governs both the
bifurcation and stability of the symmetric and asymmetric branches of flow states
around Rec. Moreover, when Re > Rec, the growth rate of the instability of the
symmetric states is related to the decay rate of the perturbations to the asymmetric
state, i.e. kas = −2ks.

The direct numerical simulations based on the unsteady Navier–Stokes equations
can be used to describe the evolution of a perturbed laminar, incompressible and
two-dimensional flow in a suddenly expanding channel. It should be emphasized
that the use of the asymptotic corner solution in the numerical simulation helps
to improve the accuracy of the computations and reduce the levels of refinement
needed to better resolve the flow around the corners compared to standard numerical
techniques. The simulations demonstrate the relationship between the linear stability
results and the time-asymptotic behaviour of the flow as described by the asymptotic
steady-state solution. It is found that, indeed, the symmetric flows with Re < Rec are
linearly stable to two-dimensional disturbances, whereas the symmetric states with
Re > Rec are unstable. It is also interesting to notice that the rate of decay or growth
of disturbances computed from the numerical simulations matches with the linear
stability formulae. This result clarifies the relationship between the bifurcation/linear
stability analyses and the direct numerical simulations.

The numerical studies also shed light on the nonlinear dynamics of the laminar
flows in a channel with a sudden expansion and connect the bifurcation and stability
analyses. It is demonstrated through the dynamics of small- and large-amplitude
disturbances that the symmetric states may be absolutely stable (to any size of initial
disturbance) when Re < Rec and are absolutely unstable when Re > Rec. The flow
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Figure 21. Local polar coordinate system at the lower expansion corner.

evolves into asymmetric states that may be absolutely stable when Re > Rec but lose
their stability characteristics as Re approaches Rec. From this perspective, the critical
state at Rec is a point of exchange of stability for both the symmetric and asymmetric
states. This dynamical behaviour is similar to that described in the experiments of
Durst et al. (1974), Cherdron et al. (1978), Fearn et al. (1990) and Durst et al. (1993).

The above asymptotic analyses and numerical simulations present an interesting
physical picture of the dynamics of disturbances in a laminar flow in an expanding
channel. When the Reynolds number is sufficiently low the flow cannot sustain any
disturbance and any initial disturbance decays through viscous dissipation. As the
Reynolds number is increased, the viscous dissipation is reduced and the symmetric
flow becomes less stable. There exists the critical level Rec where there is a critical
balance between the destabilizing upstream convection effects of asymmetric pertur-
bations and the combined stabilizing effects of the viscous dissipation and of the
downstream convection of perturbations by the base flow. At this Reynolds number
the flow can sustain a neutrally stable, asymmetric, standing, infinitesimal disturbance
wave, the shape of which is described by the eigenfunction ψα. When Re is increased
above Rec the upstream convection effects of the asymmetric perturbation become
dominant and, therefore, the symmetric flow becomes unstable. The larger Re is, the
more unstable the symmetric flow becomes. As the asymmetric perturbation grows,
the convection of the vorticity perturbation by the axial velocity perturbation creates
a stabilizing influence which stops the growth of the asymmetric perturbation and
establishes the asymmetric steady state. Around Rec, the larger Re is, the more stable
the asymmetric flow becomes. The asymptotic and numerical studies support this
physical mechanism of transition of laminar flows in an expanding channel from
symmetric to asymmetric equilibrium states.

It should be emphasized that the present analysis is limited to the study of
two-dimensional disturbances. Three-dimensional disturbances may also exhibit in-
stabilities and may dominate the flow. However, the experiments of Sobey (1985)
demonstrate that for channels with a moderate expansion ratio, D/d ∼ 3, such insta-
bilities appear at Reynolds numbers which are much higher than Rec(D/d) for the
two-dimensional disturbances.

Appendix. Local corner analysis
The asymptotic analysis around the corners follows the paper by Moffatt (1964).

The flow field around a right-angle corner is studied using a polar coordinate system

(r, θ), where r =
√
x′2 + y′2, θ = arctan(y′/x′) (see figure 21). Here x′ = x̄/d and
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y′ = ȳ/d. The point r = 0 is at the expansion corner and the line θ = 0 is parallel to
x-axis toward downstream. In this coordinate system equations (2)–(4) take the form

Ωt + vrΩr +
vθ

r
Ωθ =

1

Re

(
Ωrr +

1

r
Ωr +

1

r2
Ωθθ

)
, (A 1)

Ω = −
(
ψrr +

1

r
ψr +

1

r2
ψθθ

)
, (A 2)

vr =
1

r
ψθ, vθ = −ψr, (A 3)

where vr(r, θ, t) and vθ(r, θ, t) denote the velocity components in the radial and cir-
cumferential directions, respectively (see figure 21).

The boundary conditions are the tangency and no-slip conditions at the walls as
well as the behaviour of the outer solution as r increases. For example, for the lower
expansion corner (at x = 0, y = −1/2), at all time t the conditions are

vr(r, θ = π, t) = 0, vθ(r, θ = π, t) = 0,

vr(r, θ = −π/2, t) = 0, vθ(r, θ = −π/2, t) = 0.

}
(A 4)

We look for a local solution around the expansion corner in the small region,
0 < r � 1. We expect that for all time t, the stream function variations near the
corner are relatively small. Therefore, according to Moffatt (1964) for all time t the
stream function ψ(r, θ, t) may be given by the asymptotic expansion

ψ(r, θ, t) = ψ0 + rαFα(θ, t) + rβFβ(θ, t) + · · · (A 5)

where ψ0 is a constant reference stream function at the wall. Using (A 5), the velocity
components vr(r, θ, t) and vθ(r, θ, t) can be computed, and, for finite speeds near the
corner, α > 1.

Substituting (A 5) into (A 1)–(A 3) and neglecting the higher-order time-derivative
terms and convective terms in the vorticity transport equation, results in the leading
order O(rα−4) equation:

Fαθθθθ + (α2 + (α− 2)2)Fαθθ + α2(α− 2)2Fα = 0. (A 6)

This equation means that the flow near the corner behaves like a Stokes flow (very
viscous flow) for which ∇2Ω = 0. When α = 2, the solution of (A 6) is

F2(θ, t) = A2 sin (2θ) + B2 cos (2θ) + C2θ + D2 (A 7)

and when 1 < α 6= 2, the solution is

Fα(θ, t) = Aα sin (αθ) + Bα cos (αθ) + Cα sin ((α− 2)θ) + Dα cos ((α− 2)θ). (A 8)

It should be clarified that the parameters Aα, Bα, Cα, and Dα in (A 8) may be functions
of time t. The relations between these parameters are determined from the wall
boundary conditions (A 4) according to the eigenvalue problem sin (απ) cos (απ) sin (απ) cos (απ)

α cos (απ) −α sin (απ) (α− 2) sin (απ) −(α− 2) cos (απ)
− sin (απ/2) cos (απ/2) sin (απ/2) − cos (απ/2)
α cos (απ/2) α sin (απ/2) −(α− 2) sin (απ/2) −(α− 2) cos (απ/2)



×
 Aα

Bα
Cα
Dα

 =

 0
0
0
0

 . (A 9)
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For a non-trivial solution of (A 9), the determinant of the influence matrix must
vanish. Four distinguished values of the power α are found:

α0 = 1, α1 = 1.5444837368 · · · , α2 = 1.9085291895 · · · , α3 = 2. (A 10)

We analyse now the four cases.
Using the previous analysis, the power α must be greater than 1 and, therefore, the

eigenvalue α0 = 1 is not relevant.
For the case α3 = 2, the solution (A 7) is used. Applying the four boundary

conditions (A 4), the solution of (A 9) is the trivial case A2 = B2 = C2 = D2 = 0,
where subscript 2 denotes α = 2. Therefore, we find that the eigenvalue α3 = 2 is also
not relevant.

Under the given geometry and flow conditions the leading-order power α must
be either α1 = 1.5444837368 · · · or α2 = 1.9085291895 · · ·. The leading-order power
may be α1 = 1.5444837368 · · ·. This solution agrees with Moffatt (1964). Using the
order balance of the equation of motion and the fact that both α2 − 4 < α1 − 2 and
α2 − 4 < 2α1 − 4, we find that in the expansion (A 5) β = α2. This indicates that the
second-order term in (A 5) is also governed by the viscous effects only. As a result, as
r tends to zero

ψ = ψ0 + Dα1
rα1fα1

(θ) + Dα2
rα2fα2

(θ) + · · · (A 11)

where for i = 1, 2 we define

fαi(θ) =
Aαi
Dαi

sin (αiθ) +
Bαi
Dαi

cos (αiθ) +
Cαi
Dαi

sin ((αi − 2)θ) + cos ((αi − 2)θ). (A 12)

Using the eigenvalue problem (A 9) we find the relations between the various param-
eters Aαi , Bαi , Cαi , Dαi for both α1 and α2 cases. For all time t we have

Aα1

Dα1

= 0.5430755797 · · · , Aα2

Dα2

= −0.2189232333 · · · ,
Bα1

Dα1

= 0.2030285360 · · · , Bα2

Dα2

= 3.042085395 · · · ,
Cα1

Dα1

= −0.3738495065 · · · , Cα2

Dα2

= 13.89567161 · · · ,


(A 13)

where Dα1
(t) and Dα2

(t) are parameters to be determined from the outer solution of
the problem.

The asymptotic expansion (A 11) shows that the viscous flow near the corner is
composed of two dominant modes related to the functions fα1

(θ) and fα2
(θ). To

demonstrate the nature of each mode, we present in figure 22 streamline patterns
according to (A 11) where Dα1

= 1 and Dα2
= 0 (figure 22a) and Dα1

= 0 and
Dα2

= 1 (figure 22b). It can be seen that the mode associated with the power α1 =
1.5444837368 · · · describes a smooth turning of the flow around the corner without
any separation, whereas the mode associated with the power α2 = 1.9085291895 · · ·
describes a flow separation with a straight separation line originating from the corner
and oriented at 135◦ from both walls creating the corner. In a viscous flow around a
corner both effects may take place and the local flow is determined from the values
of the parameters Dα1

(t) and Dα2
(t). When |Dα1

(t)| � |Dα2
(t)|, which is typical of

relatively low-Re flows (Re < 1), the smooth turning of flow dominates the corner
region. However, when |Dα2

(t)| is of the order of |Dα1
(t)|, which is typical of high-Re

flows (Re > 20), the mode of separation combines in a nonlinear way with the smooth
flow turning mode to create a complicated local flow region very close to the corner.



Laminar flow in a channel with a sudden expansion 319

(a) (b)

Figure 22. Streamline patterns according to (A 11) for (a) smooth flow mode,
(b) separated flow mode.

Using the above solution (A 11) for ψ we can continue the asymptotic analysis and
show that the third-order term in the expansion (A 5) must be O(D2

α1
(t)Re r2α1 ). In

summary, we may conclude that as r tends to zero the local flow around the corner
is described by

ψ(r, θ, t) = ψ0 + Dα1
(t)rα1fα1

+ Dα2
(t)rα2fα2

+ O(D2
α1

(t)Re r2α1 ). (A 14)

This result shows that the asymptotic expansion (A 14) for ψ(r, θ, t) near the corner
is valid when the distance r from the corner satisfies

0 6 r � 1

Re1/α1
. (A 15)

Consequently, the local asymptotic solution describing the flow around the corner
is given by (A 14) with

Ω(r, θ, t) = −Dα1
(t)rα1−2[α2

1fα1
(θ) + f(II)

α1
(θ)]− Dα2

(t)rα2−2[α2
2fα2

(θ) + f(II)
α2

(θ)]

+O(D2
α1

(t)Re r2α1−2), (A 16)

p(r, θ, t) = p0 + Dα1
(t)

1/Re

(α1 − 2)
rα1−2(α2

1fα1
(θ) + f(II)

α1
(θ))(I)

+Dα2
(t)

1/Re

(α2 − 2)
rα2−2(α2

2fα2
(θ) + f(II)

α2
(θ))(I) + O(D2

α1
(t)r2α1−2). (A 17)

It can be seen that the velocity components tend to zero as the corner is approached
and that the vorticity, the pressure, and the other stress components are all singular
at the corner.
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